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Summary 

Electrostatic field effects in high pressure dis­
charges which provide physical insight into the pro­
blem of electrode design are derived. The coupled set 
of charge transport equations and Poisson's equation 
have been analytically studied using perturbation 
theory techniques. Our study reveals that the homoge­
eous field must be supplemented by the inhomogeneous 
contributions of space charge and polarization effects 
which arise from nonuniform plasma ionization and 
local nonconservation of each species current. The 
validity of a commonly used boundary condition is 
examined and found untenable. Implications for the 
computational design of electrodes are presented. 

Introduction 

The rational engineering design of electrodes for 
externally ionized as well as self-sustained glow 
discharges requires an appreciation of dominant 
physical effects as well as mathematical consequences 
of the modelling equations. Contemporary design 
practice invokes techniques which vary in 
sophistication from the widely used empirical method 
of cut and try to numerical methods of solving the 
nonlinear Poisson equation in arbitrary materials and 
geometries. 

To some investigators, a very appealing feature of 
discharge physics is its insatiable appetite for 
computationally recondite theories which must of 
course be self-consistently linked together. Unfor­
tunately, in our haste to compute, we sometimes lose 
sight of the most elementary issues which can then 
sabotage us from undergrowth of arcanna in which they 
hide. Such a problem in electrode design and in 
calculations of the discharge field is how to pre­
scribe the boundary conditions of the field. In 
tackling this problem, which is addressed below, we 
have begun with a fresh look at the electrostatics of 
discharges based on elementary undergraduate consider­
ations. Our conclusions have provided us with intui­
tive insight into the physical mechanisms which govern 
the field behavior and have guided us in the construc­
tion of our computational models used in electrode 
design. 

In the following, we limit ourselves to the design of 
two dimensional electrode profiles. In practice, an 
approximate solution to the real problem of deter­
mining a three dimensional profile may be obtained by 
smoothly fitting together rectilinear and axi­
symmetric profiles. Theoretical work is in progress 
to address the computational problem of a self­
consistent three dimensional electrode design. 

Historical Survey 

The Zeoroeth Order and most prevalent method of 
contemporary electrode design assumes that the field 
is completely homogeneous and a resort is made to the 
conformal mapping solutions of Laplace's equation 
which appear in Maxwell's treatise. The algorithm for 
design was worked out by Rogowski and appears in 
Cobine' s book. 1 The Rogowski profile results from a 
semi-infinite cartesian coordinate system. The 
correct solution for a finite width coutour is in 
principle available but contains implicit functions o~ 
the elliptic functions of the first and second kind. 
The Chang profile results from analytically continuing 
the Rogowski profile and requiring maximal

3 
uniformity 

of the field on the center of the elctrode. In addi­
tion to these analytic techniques, rather elaborate 
computer codes now exist to solve Laplace's equations 
in arbitrary materials and subject to standard mixed 
boundary conditions on a finite enclosing surface. 

The objective of these analytical techniques is to 
produce an electrode profile on which the field 
intensity is maximally uniform and monotonically 
decreasing from the symmetry plane of the profile. 
However theoretical and experimental evidence strongly 
suggests that this may not be the most desirable 
engineering criterion. In ref 4 investigations are 
reported in which the electrode profile was shaped to 
provide for abrupt deviations of the field from the 
above conditions near the edge of the discharge. The 
result was a reduction of discharge constriction, a 
very sharp discharge edge and very flat optical 
uniformity. Furthermore it is a commonly observed 
fact that large discharge devices tend to arc in pre­
ferential locations on the electrodes. These loca­
tions are usually found where one can intuitively 
perceive the existence of large field stress concen­
trations. Thus in such cases device failure is due to 
a local weakness in design and not a global 
deficiency. A highly desirable engineering design 
objective is then to distribute such local stresses 
throughout a larger area to improve uniformity of per­
formance throughout the device. 

There are two issues which are raised by the above 
techniques. A major limitation of the analytic 
techniques and of a standard "Laplace" computer code 
is that they are normally limited in validity to 
rectilinear coordinate systems with translational 
symmetry in the third dimension and thus may not be 
casually applied to cylindrical geometries which are 
essential to switch design. The solutions derived 
from conformal mapping techniques may not be applied 
to cylindrical geometries because the applicable part 
of the cylindrical Laplacian is not harmonic in the 
sense of complex variable theory. The "Laplace" code 
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solutions on the other hand do not in general use the 
cylindrical Laplacian for the numerical development. 
Thus an uncritical use of standard profiles in 
cylindrical devices which involve a mere rotation of a 
rectilinear solution about the symmetry axis is 
unwarranted. Work is now in progress to develop 
standard techniques for this problem. 

The second major limitation which comes to light in a 
practical application of the numerical technique is 
that a real device geometry may occasionally possess a 
boundary which is sufficiently distant from the cavity 
that it sets up an asymptotic boundary condition. In 
practice the investigator may then impose an artifi­
cial boundary on the device which approximates the 
asymptotic consequences in a bounded region. However, 
even though this artificial condition may in some 
sense be a good overall approximation to the true 
field behavior, it can introduce distortions to the 
fringing field behavior and hence to the roll-off 
contour of an electrode profile. A better practical 
approximation to the problem of distant boundaries is 
to impose the true asymptotic conditions in a finite 
domain which has been mapped from the "infinite" 
domain. The technique of numerical mapping as it is 
addressed in the following companion paper thus 
retains the essential fringing field behavior 
characteristics of the conformal mapping solutions. 

The technique of merely solving Laplace's equation for 
electrod~ design works well in self-sustained dis­
charges. However, as we will show below, inhomo­
geneous source terms do not completely disappear for 
this case, they are only less important than those in 
the externally sustained case. 

In externally sustained discharges, the spatially non­
uniform primary ionization causes the cavity field to 
deviate substantially from the homogeneous field. 
Instead of solving Laplace's equation, a nonlinear 
Poisson equation, resulting from current conservation 
requi.rements, is solved numerically. S-S In our 
analysis we will investigate assumptions which enter 
into this procedure. We will find that the assumption 
of vanishing normal field at the edge of a discharge 
confinement region is not merely invalid as would be 
generally suspected, but that it is also entirely 
wrong and misleading.S-? Next we will investigate the 
assumption of electron drift current conservation 
which leads to the applicable nonlinear Poisson 
equation. We will discover nonconservation of 
electron drift current with a consequent space charge 
and second order field distortion. 

Analysis 

We will derive our higher order effects from the 

coupled set of equations for electron and ion 

transport together with Poisson's equation. 

an. + + 
--

1 
+ 17•n

1
. v at i 

2 
17 <!> 

S - em. n + Sn 
1 e e 

S-cm.n +Bn 
1 e e 
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Here n. (~) is 
1,e 

the number density of ions or 

electrons. v. (E/N) is the drift velocity due to the 
1,e 

neutral gas, N, and the normalized electric field, 

E (;) =- V <!>. The recombination rate is a(E/N) and 

the combined secondary ionization and attachment rate 

is S(E/N). The spatially varying primary ionization 

source term, S(~) ,is also an implicit function 

of E(;) and B(;) . Eut we neglect the self-consistent 

coupling of S to E and B for this analysis. In the 

event that S is provided for by an electron beam, then 

the fast primary electrons will eventually be 

thermalized by the discharge gas and will contribute 

to the space charge term. This can be a substantial 

effect, but we will neglect it here for the sake of 

clarity in our following arguments. For the sake of 

algebraic simplicity we simplify our considerations to 

the case of S=O. Analagous conclusions may be drawn 

from an extension of our analysis to the case of 

1310. We have neglected the diffusion current and 

its derivatives in comparison to the convection 

current and its derivatives for the specialized case 

of high pressures. 

The conventional procedure is to assume: 

a) 

b) 

Steady state, 
an. 

1,e 
--at= 0 

+ 
Quasi-neutrality, ni= ne' for all x; and 

c) Separate species current conservation, 
+ 
17 • n 

e 
+ + v = 0 = 17 • 

e 

From the electron current equation, for example, we 

then obtain n = 1~, which together with current 
e 

conversation yields a nonlinear conductivity equation: 

This further results in the nonlinear Poisson 

equation: 

2 ++ ~ 
17 <!> = E•17ln {ls(i) vi ,e(E/N)} 

la (E/N) • 

Here v. (E/N) and a(E/N) are known either 
1,e 

experimentally or by kinetic calculations. The 

nonlinear Poisson equation is then solved subject to 

appropriate boundary conditions to give a First-Order 

solution to the discharge field problem. 

In the case of a self-sustained discharge, the 

external ionizing term, S(~) , disappears and must be 



replaced by the combined secondary ionization and 

attachment term in We then obtain n. ~ ~/a which 
1,e 

upon inserting into the current conservatior1 equation 

and applying the chain rule yields: 

aE 
S(E/N) v. (E/N) 

1,e } 
---:-E:-a------,(""E-7/ N~)::------- 0 

Which results in Laplace's equation for the 

field, '7
2

<P ~ 0 • 

Thus the First-Order development of the coupled set of 

equations for a self-sustained discharge results in a 

homogeneous electric field. Therefore electrodes for 

this case may be based on a harmonic analysis as has 

been the practice. 

In the following we challenge an assumption which is 

often and recklessly made. Z-S Namely that the 

electric field normal to a discharge confinement wall 

vanishes. This assumption is equivalent to assuming 

that the fringing fields which occur with any bounded 

conductor in free space are contained by the confined 

plasma "since the plasma is a conductor." Another 

argument one may occasionally encounter which supports 

the idea of confined field lines in the plasma is that 

the plasma is so strongly polarized that it traps the 

field lines by dielectric focusing as in the optical 

phenomenon of total internal reflection. We will 

analyze both points of view and demonstrate that the 

assertion of a vanishing normal component of the field 

is insupportable and spurious. 

Space Charge Effects From Current Conservation 

For convenience, we model 

of E/N and assume that N 

a and v as power functions 

is con:tant. 7 That is we 

neglect gasdynamic effects. 

Let a 

and define s( x) 
S(x) 
S(O) and 1; 

1 
2(a+b) 

Then the space charge density is: 

p 
+ + 

E ll•E 
0 

9, 

and V ~ - f 
0 

0 

-E 1;E•Vln[s(x)]. 
0 

+ + 
E • di , we obtain 
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E(x) 

and thus 

p 

- v 
0 

[s(x)rs 
9, 

f s(x)]-1;dJ!, 
0 

The charge stored within a stream tube between elec­

trodes is thus 

Using the definition of capacitance per unit area C/ A 

~ (Q/A)/V we find that the ratio of the capacitance of 

the discharge to that of the free space capacitor is 

given by the tenn in braces. For a uniform source we 

see that the ratio vanishes. For a very severe case, 

we may approximate s(x) ~exp(-kx) This corresponds 

to a real AFWL device, PULSAR, where k ~ -0.216, a 

0.78, b ~ 0.56. We obtain the ratio of the capaci-

tance of a flux tube to that of the free space 

capacitor plates to be Cdis/C
0 

~ W ~ 0.081. That is 

the free space capacitor contributes over 90% of the 

field behavior to the device and hence the field is 

mostly homogeneous and mostly fringes at its edges. 

We pause to note, however, that even though the bulk 

effect of the discharge on the overall capacitance is 

small, the local field intensity may deviate substan-

tially from the homogeneous field. 

PULSAR we have (i ~ 5): 

E(x) 
E 

0 

~ IJX r1.20 
9 e 0.80 ew • -1 

In the case of 

Polarization Effects for Current Conservation 

Since we now know that the discharge stores charge in 

the bulk we would like to know how it behaves in small 

localities. In a differential volume of cross sec-

tional area dA and length dx along a flux line we have 

a charge dQ and a voltage drop dV ~ Edx. Together 

these lead to an incremental capacitance per unit area 

of 



C' dQ/dA (l dx = s z; E·~ ln [s(x)] 
= ~ = E dx 0 

We thus see that our externally ionized discharge can 

store charge and possesses an incremental capacitance 

due to its non-uniform conductivity. We will now 

outline a calculation of the discharge's associated 

equivalent relative permittivity on the basis of 

electrostatic energy arguments. We have 

u [ /'[s(x)~-<:;Jzl 
L J [ s( x)] z; d 

0 

The term in braces is thus an equivalent relative 

local dielectric constant of the discharge in the 

sense of indicating either constriction or dilation of 

the field lines in the transverse direction as 

Faraday's rubber lines of force would tend towards. 

For the case of PULSAR, 

)JXl2 rl.SO 
e , 0.65 as x j~ . 

Although we are presenting an exaggerated and pathol­

ogical case we can clearly see the general trends. 

The discharge acts like a dielectric lens which bends 

the fringing field lines away from the cavity near the 

cathode and towards the cavity near the anode. This 

explains the empirically determined engineering 

practice of sharply rounding cathode roll-off contours 

and mildly rounding anode roll-off contours when the 

e-beam is injected from the cathode side. 

Once again we see that the discharge only slightly 

affects the true field in comparison to the homo­

geneous field (although significantly for electrode 

design purposes), Thus in the vicinity of the dis-

charge edge we are completely unjustified in asserting 

that the normal electric field component vanishes as 

is done in ref 5-7. The effect of imposing this 

artificial condition is to distort the curvature of 

the potential surfaces near the roll-off thus inval­

idating any electrode profile design accomplished in 

this manner, In order to retain the correct field 

behavior near the roll-off we must correctly match the 

field behavior in the asymptotic region, This is best 

accomplished by the mapping techniques presented in 

the following companion paper. 

A second consequence of the smallness of the distor­

tions introduced by the polarization of the discharge 

is that we must now include all surrounding 

dielectrics in our calculations. 

Nonconservation of Species Currents 

In this section we outline an investigation into the 

validity of assuming conservation of each species 

current. Unfortunately the lengthy and tedious 

algebra involved mandates a condensation of our 

reasoning into its most salient features. We will 

find that each species currant is not independently 

conserved and that as a result the true field will 

vary from the first order field by Second-Order 

effects due to power loading. 

First we note that in deriving our non-linear Poisson 

equation, that we could just as easily have used 

vi as ve' However the dependence of ve on E/n varies 

widely among gases with a power dependence varying 

from b = 0.5 for co2 to b = 0.9 for N2 whereas for 

most bases the power for vi is very close to unity, 

We are thus led to seek out disparities in the overall 

behavior due to this difference. 
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Let v = BEb and v.= CEc 
e 1 

then 

~ = ( 1 ) C Ec-b 
J. 1=8 B 

e 

where 

6 -

For the pathological case of PULSAR we have 6 < 1o-3 

and 6 ' ~ k 6 < 1 o-3 , We may thus neglect 6 in our 

subsequent remarks, although in general 6 must be 

retained throughout all manipulations to ensure that 

correct perturbation orders are addressed, 

j
0

, we obtain 



ji 
c Ec-b 
B 

jo l + c Ec-b 
B 

je = 
jo l + ~ 

B 
Ec-b 

In the spirit of successive approximations we thus see 

that ~'· j, = 0 implies ~·E I> 0 which in the l,e 
next higher order treatment implies that 

I V• j. I > o. l,e 

Using E in terms of j/jo from above, we may rewrite 

a (E) and v. and thus n. in 
l,e l,e 

Thus the ion current conservation 

into a form which depends only 

auxilliary parameters: 

where n=2 a+b and e 
c-b 2 a+c 

c-b' 

terms of ji/jo 

equation may be cast 

on ji /jo and 

We have analytically investigated this equation with 

perturbation theoretic techniques based on the 

assumption of a slowly varying ji(x) and using 

linearization wherever possible due to the smallness 

of ji/jo. 

where E(x) is the perturbing term. Inserting this 

into our last expression for current conservation and 

applying the above techniques we obtain 

e x 
E(x)~[s(x)]-s{l 2a+b+c [exp( 2 ~ J S(x)dx)-l]} 

Jo o 

X 

The term in braces depends on the factor ~ J S(x)dx 
J 

which is approximately !n dx/v which inc0reas0es with 
e e 

power loading for a relatively fixed E. Thus the 

first order electric field solution due to current 

conservation deviates from the true solution by a 

small term dependent on the local power loading. For 

a 

ll e 
the 

case 
12 

"' 10 

first 

where S(x) is 

with PULSAR like 

order variation 

constant 

parameters, 

vanishes and 

and yields 

we see that 

the second 

order term contributes a 10 percent variation to the 

field intensity and a 20 percent variation to the 
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permittivity. Thus this power loading induced space 

charge effect cannot in general be ignored. 

Having established the effect of species current non­

conservation on the discharge we have now justified 

the need to solve the fully coupled set of transport 

equations together with Poisson's equation in order to 

correctly determine the electric field for electrode 

design for externally ionized discharges. This aspect 

of the general problem is currently being pursued with 

a mid-term priority. 

Finally, we may note that even if we set S(x)=O in our 
rewritten ion conservation equation, that j i/ j

0 
will 

still have a spatial dependence (we of course must add 
the 8 term which we dropped earlier). Thus to second 
order, even self-sustained discharges will possess 
electric fields which deviate from the homogeneous 
solution. 

Conclusion 

The electric field of an externally ionized discharge 
is mostly homogeneous. Space charge can affect the 
local field intensity by as much as 20 percent in 
severe cases. Discharge polarization can enhance or 
diminish transverse field structure, i.e., fringing, 
by as much as SO percent. A rational electrode design 
theory must predict these effects. 
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